United States Patent

US009288163B2

(12) 10) Patent No.: US 9,288,163 B2
Arramreddy et al. 45) Date of Patent: Mar. 15, 2016
(54) LOW-LATENCY PACKET RECEIVE 5,812,775 A * 9/1998 Van Setersetal. 709/213
METHOD FOR NETWORKING DEVICES G496516 B+ 122002 FadwviArdelcani . G11C $12
,496, adavi-Ardekani
(71) Applicant: Emulex Design & Manufacturing 710/40
Corporation, Costa Mesa, CA (US) o gé: 1%882 (SZ:}IIhoutn o Al s ;gggg
,133, aetal. ..
(72) Inventors: Sujith Arramreddy, Saratoga, CA (US); 7,606,978 B2* 10/2009 Landin et al. .. 711/141
Ashwin Kamath, Cedar Park, TX (US), 7,624,157 B2* 11/2009 Davidetal. 709/215
Anthony Hurson, Austin, TX (US): 7,843,906 B1* 11/2010 Chidambaram ... HOAL 47/6205
. ’ ’ ’ 370/386
g}g’)‘“g;a St She“T"ys Sllmn}"’l{a/[les CtA, 8,250,586 B2* 82012 Nelson GOGF 9/45533
; Chaitanya Tumuluri, Mountain 711/148
View, CA (US); Ganesh Boddapati, 8,619,800 B1* 12/2013 Finney HOA4L 49/9042
Austin, TX (US) 370/392
. . 2002/0161846 Al* 10/2002 Ulrichetal.cc......... 709/213
(73) Assignee: Avago Technologies General IP 2004/0205319 Al* 10/2004 Pickreign etal. 711/202
(Singapore) Pte. Ltd., Singapore (SG) 2005/0086448 Al1* 4/2005 Anand ... GOG6F 12/023
. 711/170
(*) Notice: Subject to any disclaimer, the term of this 2005/0108399 Al* 5/2005 Bouknight, Jr. HO4L 47/36
patent is extended or adjusted under 35 709/226
U.S.C. 154(b) by 386 days. 2005/0213603 Al* 9/2005 Karighattam HO4L 49/90
370/463
(21) Appl. No.: 13/843,021 2006/0248234 Al* 11/2006 POpPecccccovovvervennnns HO04L. 49/90
. 709/250
(22) Filed: Mar. 15,2013 2006/0288129 AL* 12/2006 POPE wovvooevrerrcrrnen GOGF 13/28
(65) Prior Publication Data 710/22
US 2014/0280674 A1 Sep. 18, 2014 (Continued)
(51) Int.ClL Primary Examiner — Backhean Tiv
HO4L 12/861 (2013.01)
GOG6F 9/455 (2006.01) (57) ABSTRACT
HO4L 12/863 (2013.01)
HO4L 12/879 (2013.01) When 1nterfacmg with a host, e}networklng dev%ce can handle
(52) US.Cl afirst data like Bulk Data Receive. The networking device can
CPC) HO4L 49/90 (2013.01); GOGF 2009/45583 receive the first data and read a first queue entry from a receive
méOB 01); GO6F 5212/7303 (2013.01); HOAL queue in the host memory. In response to the read first queue
417/6215 (2013.01); HOAL 49/90] (20’13 o1) entry, the networking device can write the first data to an
(58) Field of Classification Sear;h ’ unpinned memory in the host memory. The networking
USPC 709/213 device can also handle a second data with a Receive Packet in
See apphcatlonﬁleforcompletesearchhlstory Ring (RPIR) queue. The networking device can receive the
’ second data and write the second data to a pinned memory in
(56) References Cited the host memory. The RPIR queue can be separate from or

U.S. PATENT DOCUMENTS

4,449,182 A 5/1984 Rubinson et al.

overlaid on the receive queue. High throughput and low-
latency operation can be achieved. The use of a RPIR queue
can facilitate the efficiency of resource utilization in the
reception of data messages.

5,487,152 A * 1/1996 Young 709/236
5,657,471 A * 8/1997 Lary ... GO6F 13/126
711/154 16 Claims, 7 Drawing Sheets
620 600~ Rs%gs
Host 508 Host Physical Memory
Softwars

Lo

Function Call

606 PBLs

606 PBLs

RDBs
607

833~ 630~

631~ 632 610

614

512 813
predon | aueve RemﬂlMemory Locator || Data ier

611

Networking Device

US 9,288,163 B2

Page 2
(56) References Cited 2008/0263307 Al* 10/2008 Adachi GOGF 13/1605
711/171
U.S. PATENT DOCUMENTS 2010/0153592 A1* 6/2010 Freimuth ... GOG6F 13/4022
710/38
2007/0067771 Al* 3/2007 Kulbak ...ococvvviiiiin. GOG6F 9/4843 2011/0072199 Al* 3/2011 Reiter ... GO6F 13/14
718/100 711/103
2008/0028103 Al1* 1/2008 Schlansker HOA4L 49/90 2011/0161552 A1* 6/2011 Lundccccooeeennee GOGF 12/0246
709/250 711/103
2008/0052441 Al* 2/2008 Freking GO6F 13/385 2013/0247056 Al* 9/2013 Hattori GOG6F 9/5077
710/310 718/102
2008/0091915 Al* 4/2008 Moertl GOG6F 12/145 2014/0047060 Al* 2/2014 Chenetal.cccceoeeene. 709/213
711/206 2014/0201305 Al* 7/2014 Dalaletal. 709/212
2008/0148005 Al* 6/2008 Moertl GOGF 12/1081 . .
711/202 * cited by examiner

US 9,288,163 B2

Sheet 1 of 7

Mar. 15, 2016

U.S. Patent

v0L -

Yol

oL

} "Old

14/

UOJOBULOY) YIOMIEN

0l

SPON 8)jelpauLay|

10}

US 9,288,163 B2

Sheet 2 of 7

Mar. 15, 2016

U.S. Patent

¢ 914

80¢
sgdd

N

lleQ uogauny

R

\omw
201N BuppiomsN L~
oM erea | |uogeao Aiowayy| | Jepeay enanp ﬂ_wwh_wwm ;
v’ ez’ 72
Nz [N 01z M-ecrz
A 102
G0¢
202 ST8A] Je -,
90z
02
$79d
i rAN—— 60¢
“Nooe
y0e
Aiows 1SOH
Y
202 oow‘\ EN\
Saad Jajing oA908Y
p&jsod

81eMY0S
1SOH

0sz-’

U.S. Patent Mar. 15, 2016 Sheet 3 of 7 US 9,288,163 B2

301
WQE ¥ 302
WQE header
304a—u |
305a— VA }303a VSGE

| T—_VAlength
304b— | A
308b—~_{ VAjenah }303b VSGE

307a . Virtual Adress
\L_:—jw [:——}‘_ Space |~ 306

07—]
! v 309 y Host
PBL 3092~} PBL Physical
Memory
310a 308
310b s10c -RDBS

FIG. 3

U.S. Patent Mar. 15, 2016 Sheet 4 of 7

Posted Receive

Buffer
405
404a
RQ Element {
404

RPIR

FIG. 4

US 9,288,163 B2

400

U.S. Patent Mar. 15, 2016 Sheet 5 of 7 US 9,288,163 B2

Networking Device

550~ Packet(s) for read() Host Software
arrive from remote peer
Host posts read() 500
! function call
551~ Program RPIR ring |
address into data writer Create WQE and 501
store in RQ
Write acket‘data to RPIR - , !
5501 pufer in host memory Notify device of WQE by | ~502
writing “doorbell” register
Notify host"software of Await not#ication of 503
553" data arrival into RPIR receipt of data from device
buffer
Data arrived?
504
| Yes
Copy data from RPIR ring to
read() data buffer(s) [™-505
'
Complete [return from read()
function call] 506

FIG. 5

US 9,288,163 B2

Sheet 6 of 7

Mar. 15, 2016

U.S. Patent

leD uopoun4

129~

20I1A8 (] BupjOMBN WX
_ loysibay | |,
JojIM B1e@ | juoneoo Alowsjy| | 13pesy snenp ieqiooq | [
719~ €19~ 79~
|\ y A
019 2291 Neg -0€9 | ™-g€9
NO@l A
sgad
s18d 909 1909
9 'Ol 509~
0 oY <
g £09
$78d 909~)
o9 c09
fiowaly [eaisAyd JSoH 809
¥
109 //oom
SgaY

81eMY0S
JSOH

029~

US 9,288,163 B2

Sheet 7 of 7

Mar. 15, 2016

U.S. Patent

4L "9Did

N 082

801N

06/
- Aows 68/~ _ 01607
201A8(] \ | eomeq |-28L
98/ 88,
sng 80i1A8(H
fowapy | 8.8~ 91607
yLL 1501 \ | soy [Tl
9./
sng 1SOH

002"

N 0L
JSCH

US 9,288,163 B2

1

LOW-LATENCY PACKET RECEIVE
METHOD FOR NETWORKING DEVICES

FIELD OF THE DISCLOSURE

This relates generally to data communication in networks,
and more specifically to receiving packet data at endpoint
node with low latency and high bandwidth.

BACKGROUND OF THE DISCLOSURE

Latency can be described as the amount of time it takes for
a packet of data to propagate from a transmitter to a receiver.
The total latency can include overhead for time spent sending
and receiving commands, executing reads and writes, and
performing additional functions to ensure that the data can
reach the correct destination without errors. For large data
messages, achieving large bandwidth can be critical, whereas
low latency can be important for small data messages. Reduc-
ing the overhead and therefore the overall latency time for
small data messages can help lead to better performance and
faster communication in networks and message-based appli-
cations.

SUMMARY OF THE DISCLOSURE

This relates to methods and techniques to manage receiv-
ing packet data. Examples of this disclosure can be used to
achieve both high throughput and low-latency operation. The
exemplary teachings of the disclosure can describe the use of
a Receive Packet in Ring (RPIR) queue, which can facilitate
the efficiency of resource utilization in the reception of data
messages.

A networking device can interface with a host memory by
handling a first data in a certain way. The networking device
may comprise logic providing various functions, including
those of an interface, a queue reader, and a data writer. The
interface can receive the first data. The queue reader can read
afirst queue entry from areceive queue in the host memory. In
response to the read first queue entry, the data writer can write
the first data to an unpinned memory in the host memory.
These teachings can contribute to Bulk Data Receive func-
tionality.

The networking device can interface with the host memory
by also handling a second data, yet in a different way. The
interface can also receive the second data. The data write can
write the second data to a pinned memory in the host memory.
These teachings can contribute to Receive Packet in Ring
functionality.

In some examples, the pinned memory can be a data buffer
queue. The data writer can write the second data to the data
buffer queue at a data buffer queue element corresponding to
a second queue entry of the receive queue. Through these
teachings, the RPIR queue can be separate from the receive
queue.

In other examples, the pinned memory can be the receive
queue itself. The data writer can write the second data to the
receive queue. Through these teachings, the RPIR queue can
be overlaid on the receive queue.

The networking device may be incorporated in a network-
ing adapter (e.g., a NIC, an Ethernet card, a host bus adapter
(HBA), a CNA) or in a host. The host may incorporate the
networking adapter. The various examples may be provided
in a network, as well. Additional examples include machine-
readable media that implement the methods of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary network in which some of
the examples of this disclosure may be practiced.

10

20

25

35

40

45

65

2

FIG. 2 illustrates an exemplary networking device receiv-
ing communication from host software and performing reads
and writes with a receive packet in ring queue and a receive
queue located in host memory.

FIG. 3 illustrates an exemplary receive posting for utilizing
a receive queue, virtually-addressed scatter/gather elements,
and pre-registered physical buffer lists.

FIG. 4 illustrates an example receive packet in ring.

FIG. 5 illustrates exemplary RPIR process flow for an
exemplary networking device and exemplary host software.

FIG. 6 illustrates an exemplary networking device receiv-
ing communication from host software and performing reads
and writes with a receive queue whose functionality has been
overlaid with the functionality of a receive packet in ring
queue located in host memory.

FIG. 7 illustrates an exemplary networking system that can
be used with one or more examples of this disclosure.

DETAILED DESCRIPTION

Inthe following description of examples, reference is made
to the accompanying drawings which form a part hereof, and
in which it is shown by way of illustration specific examples
that can be practiced. It is to be understood that other
examples can be used and structural changes can be made
without departing from the scope of the disclosed examples.

This relates to methods and techniques to manage the
receiving of packet data in networking systems for both high
throughput and low-latency operation, for applications such
as high performance computing and message-based applica-
tions. A solution to achieving lower latency when receiving
small data messages in networking devices can be to utilize a
Receive Packet in Ring queue. Examples of the disclosure can
be used to achieve high performance with low overhead time
and low overall latency when a networking device receives a
small data message, and to achieve high bandwidth when a
networking device receives a large data message.

Achieving low latency and high bandwidth for data sent in
a network can be an important aspect of proper network
operation. Managing the way a data packet is received can
help, for example, to reduce latency, which is defined herein
as the total time measured from the start of a data packet
transmitted from a networking endpoint or node to when the
data packet has been received at another networking endpoint
ornode. This management can have significant impact on the
performance of the network, particularly for communications
numbering in the low thousands, or higher.

FIG. 1 illustrates an exemplary network 100 in which some
of the examples of this disclosure may be practiced. The
network 100 can include various intermediate nodes 102.
These intermediate nodes 102 can be switches, hubs, or other
devices. The network 100 can also include various endpoint
nodes 104. These endpoint nodes 104 can be computers,
mobile devices, servers, storage devices, or other devices.
The intermediate nodes 102 can be connected to other inter-
mediate nodes and endpoint nodes 104 by way of various
network connections 106. These network connections 106
can be, for example, Ethernet-based, Fibre Channel-based, or
can be based on any other type of communication protocol.

The endpoint nodes 104 in the network 100 can transmit
and receive data to one another through network connections
106 and intermediate nodes 102. However, high latency and
long times needed to transmit the data from one endpoint
node 104 to an intermediate node 102 or another endpoint
node 104 can result under certain circumstances. For
example, when the data messages are small in size and mul-
tiple data messages are being transmitted, each data message

US 9,288,163 B2

3

can have an overhead time associated with sending and
receiving commands, executing reads and writes, and per-
forming additional functions to ensure that the data can reach
the correct destination without errors. The sum of the total
overhead time for all the small data messages can constitute a
large portion of the total latency time. This, in turn, can result
in inefficient communication rates and poor performance.

In a networking system, receiving a packet data can be
initiated by host software that notifies the networking device
of'the host software’s readiness to receive packet data through
a function call. The host software can maintain one or more
queues with entries corresponding to data buffers into which
received packet data can be placed. In user mode applications,
the software or host CPU may not have direct access to the
host physical memory, but instead can reference host physical
memory through virtual addresses and pointers. Since the
user mode application may not have direct access to physical
memory, the function call can be used by the user mode
application to convey to the networking device where to store
the received packet data through entries in a receive queue
that can include corresponding virtual addresses and pointers.
When entries are placed on the receive queue, the user mode
application can notify the networking device through a door-
bell register, located internally in the networking device.
When the networking device is available to store the received
packet data into host memory, the networking device can read
the entry from the one or more queues, translate the virtual
addresses and pointers to the corresponding host physical
memory addresses, and store the packet data into host physi-
cal memory.

FIG. 2 illustrates example queues located in host memory
200. FIG. 2 shows a Receive Queue (RQ) 202, along with an
associated Receive Packet InRing (RPIR) 201. The RPIR 201
and RQ 202 can be circular or non-circular queues and can
implement any type of buffering scheme such as First In-First
Out (FIFO). Host software can maintain the queues by plac-
ing entries, called Work Queue Elements (WQEs) 203/204/
205, into the RQ 202. A WQE can comprise a WQE header
and one or more Scatter/Gather Elements (SGEs). The WQE
header can contain the total byte count or size of the one or
more receive data buffers posted by host software. Each SGE
contains the host memory address and length of each data
buffer. RQ 202 has an associated RPIR 201, which may have
the same number of entries as the RQ 202. There canbe a 1:1
correspondence between each RPIR entry and each RQ entry.
Each RPIR queue element can be a small packet data buffer.
If the incoming packet data is small enough, the packet data
can be placed in a RPIR element without the need to access
information within the associated RQ WQE.

An example WQE for large data messages is shown in FIG.
3. The WQE 301 can comprise a WQE header 302, which can
include the total byte count or size of the receive data buffers
posted by host software, and one or more entries. The entries
can include a Virtually-Addressed Scatter/Gather Elements
(VSGEs) 303a/3035. A VSGE 3034/3035 can contain a vir-
tual address (VA) 304a/3045 of a buffer 3074/3075 located in
virtual address space 306 and the length 304a/3045 of the
buffer 307a/3075. The use of virtual addresses and the virtual
address space can be due to the user mode application not
having direct access to physical memory. The virtual buffers
307a/307b can point or correspond to a physical buffer lists
(PBLs)3094/3095 located in host physical memory 308. The
PBLs can then point to data buffers that the networking device
can write to, called receive data buffers (RDBs) 310a/3105/
310c. RDB 3104, 3105, 310¢ can be located at different,
non-contiguous host physical address locations, and any
byte-aligned address can be assigned. If the receive data

10

15

20

25

30

35

40

45

50

55

60

65

4

message size is larger than a RDB size, the receive data
message can be broken up into multiple data packets to spread
across multiple RDBs, with a physical butfer list (PBL) com-
prising multiple entries and an entry pointing to a RDB. In the
example shown in FIG. 3, the first VSGE 3044 comprises a
virtual address of a virtual buffer 307a, which then points to
PBL 309a. PBL 3094 can be divided into three, which then
points to three separate RDBs 310qa, 3105, and 310c¢. In this
example, the center RDB 31056 is completely full, while the
first RDB 3104 and the last RBB 310c are not completely full.
The PBLs can be located in contiguous memory and RDBs
can be located in discontiguous memory.

The WQE format for a small data message can be the same
as the WQE format for a large data message. Similar to above,
the WQE for a small data message can be placed into RQ 202.
Unlike an WQE for a large data message, however, the WQE
for a small data message does not need to be accessed by the
networking device. A large data message can be placed into
RBDs, but a small message can be placed into an RPIR queue
element.

An example RPIR 400 with a small data message is shown
in FIG. 4. Like an RQ, RPIR 400 can be pinned in host
memory for device access. RPIR can be pre-configured and
statically configurable. For example, the size of a data buffer
in the RPIR 400 can be a power-of-two multiple of bytes. The
received data packet 404a can be stored by the networking
device directly in RPIR element 404. The networking device
can notify the host software of the storing of received data
packet 404a. The host software can copy received data packet
404q from RPIR element 404 to posted receive buffer 405,
where the user mode application can access the copy of
received data packet 404a. The RPIR-placed message can
introduce an additional copy latency as the host software
places the device-written ring data into the actual receive
buffer posted by the application. For a small receive message,
however, this copy latency is much less than the latency of
processing a single message according to all the aspects of
FIG. 3 discussed above, which can involve two DMA reads
plus address protection/translation overhead.

Referring back to FIG. 2, host software 230 can execute a
function call 231. Host software 230 can then create a WQE
203/204/205. If the receive data message is large, the net-
working device can read a WQE (e.g., 203 or 205) from the
RQ. In the WQE, the VSGEs can include a virtual address of
avirtual buffer 206 located in virtual space. The virtual buffer
206 can point to or correspond to PBLs 207, and the PBLs can
then point to one or more RDBs 208. If the receive data
message is small, the networking device does not need to
access a WQE (e.g., 204). Because there can be a 1:1 corre-
spondence between each RPIR entry and each RQ entry,
WQE 204 as an entry in the RQ 202 can correspond to an
entry 209 in the RPIR 201. An RPIR element can contain the
entry 209 in the RPIR 201. The entry 209 can comprise the
small receive data message. After host software 230 executes
a function call 231 and the WQE has been created, the WQE
can be stored in the RQ 202, shown as 203, 204, and 205 for
receive data messages. Host software can then ring a doorbell
in the networking device to notify the networking device of
the host software’s readiness to receive a data message. Ring-
ing can be done by writing to the doorbell register 221,
located internally in the networking device 220. The doorbell
register 221 can be a mechanism used to notify the network-
ing device 220 when a new receive message buffer has been
posted by host software 230.

When the networking device 220 is ready and available to
store a large data message into host memory 200, the net-
working device 220 can perform a first read of an RQ entry,

US 9,288,163 B2

5

shown by arrow 240, using the queue reader 222. The con-
tents of the WQE of the read RQ entry can then be validated
to ensure compliance, including actions such as checking
against pre-registered memory regions and dissecting the
WQE. The VSGEs of the WQE can be translated to corre-
spond to a virtual buffer 206 that points to the PBLs 207. The
networking device 220 can then perform a second read using
the memory location reader 223, shown by arrow 241, to fetch
and read the PBLs 207. The entries of the PBLs 207 can point
to multiple physical RDBs 208. The networking device 220
can use the information read from the PBLs 207 to know
where the packet data of the large data message can be stored
in physical memory. The networking device 220 can then
perform a write using the data writer 224, shown by arrow
242, by writing the packet data to the RDBs 208. This process
for receiving a large data message into the host memory can
be described as Bulk Data Receive (BDR).

If'the incoming message is small (e.g., does not exceed the
buffer size of an RPIR element), the networking device 220
can bypass the whole WQE and PBL fetch and parsing pro-
cess discussed above. Instead, the networking device 220 can
place the small message directly into the RPIR 201. The
networking device can perform a write using data writer 224
by writing the packet data of the small message as an entry
into the RPIR 201, shown by arrow 243. The host software
230 can write a copy of the packet data to a posted receive
buffer 210, which the application can access.

While the example presented in FIG. 3 can be used for
storing large data messages, storing small data message
according to this example can suffer from high latency from
the first and second reads, which can be needed to determine
where the data message can be placed in host memory. The
large latency can be due to the multiple layers of pointers and
virtual addresses and the multiple read operations. While a
large data message still encounters latency time that can be
higher than the latency time of a small data message, the time
spent on overhead may not constitute a significant proportion
of'its total latency time. In contrast, for a small data message,
the time spent on overhead can consume a significant propor-
tion of its total latency time. To improve the efficiency of
resource utilization, small data messages can be stored
directly into physical host memory on an RPIR queue. By
directly placing the small data messages on the RPIR, the
overhead and latency can be reduced by bypassing the two
reads and the VSGE address translation steps used for large
messages.

An example RPIR process flow is shown in FIG. 5. Process
flow for the host software is on the right side. Host software
can execute a read() function call in step 500, and then can
create a WQE in step 501. Once the WQE has been created,
the WQE can be stored in an RQ, also in step 501. Host
software can ring the doorbell of the networking device in
step 502 by writing to the doorbell register located in the
networking device, notifying the networking device that the
host software is ready to receive a data message and that a
WQE has been stored in the RQ. In step 503, host software
can wait for notification from the networking device that the
networking device has written packet data into an RPIR in the
host memory. Step 504 shows that host software can check for
arrival of the packet data into the RPIR. When the packet data
has arrived into the RPIR, host software can copy the packet
data from the RPIR to the posted receive buffer in step 505.
Theuser mode application can access the packet data from the
posted receive buffer. Step 506 shows completion with return
from read() function call.

Process flow for the networking device is on the left side.
Packet data (e.g., a small data message) for the read() func-

10

15

20

25

30

35

40

45

50

55

60

65

6

tion can arrive at the networking device from a remote peer in
step 550. In step 551, the networking device can program a
target RPIR ring address into its data writer for the packet
data. In step, 552, the networking device can write the packet
data directly into the corresponding RPIR buffer in the host
memory. In step 553, the networking device can notify host
software of the arrival of the packet data into the RPIR in the
host memory.

In FIG. 5, the process flow for the networking device and
the process flow for the host software can interface with each
other at steps 503 and 553.

In contrast to a BDR process (e.g., as for a large message),
the RPIR process flow for host software may have an extra
step—step 505. This extra step may introduce a copy latency,
but this copy latency can be relatively small when compared
to the latency reduction enabled by the RPIR process flow the
networking device. For example, the RPIR process flow for
the networking device can bypass multiple steps under the
BDR process: fetching a WQE from an RQ in host memory,
performing address translation on VSGE(s) in the fetched
WQE to obtain PBL address(es) in host memory, fetching
PBL(s) from host memory, extracting host data buffer physi-
cal address(es) from the fetched PBL(s), and programming
the extracted host data buffer physical address(es) into the
data writer. Instead, the RPIR process flow for the networking
device can replace these multiple BDR steps with step 551—
programming a RPIR ring address into its data writer.

Even though the RPIR process flow may have compara-
tively lower latency than the BDR process flow, examples of
this disclosure may utilize both RPIR process flow and BDR
process flow in a way that improves the efficiency of resource
utilization. For instance, a single RQ may have WQEs for
both large and small messages. A large message may be
subjectto a BDR process, and a small message may be subject
to a RPIR process.

In another example, the WQEs can be created and prepared
by a kernel mode application. Kernel mode differs from user
mode in that the computer processing unit has complete and
unrestricted access to physical memory, so virtual addresses
are not needed. For example, kernel mode applications can be
used when security is not a concern. In kernel mode applica-
tions, the kernel can prepare the WQE and, due to the acces-
sibility of the physical address space, VSGEs, address pro-
tection checks, address translations, and PBL fetches can be
eliminated. The RPIR can still be relevant and beneficial to
kernel mode application because the RPIR can further render
itunnecessary for the networking device to perform the WQE
fetch and processing.

In another example; the RPIR data buffer and RQ can be
overlaid in host physical memory 600 as shown in FIG. 6,
which can be used in examples when pinned memory
resources are scarce, such as in large cluster high-perfor-
mance computing applications, and data packet sizes are less
than or equal to the RQ data buffer size. This example can
allow for zero host memory overhead and less memory con-
sumption due to the reduced number of queues utilized.

The example process flow in FIG. 5 may also apply for the
example in FIG. 6. The host software 620 can execute a
function call 621. The host software 620 can then create a
WQE entry 602/603/604 and write to the doorbell register
611 located internally in the networking device 610.

If an incoming data message is directed to an RPIR pro-
cess, the networking device 610 can overwrite the message’s
associated WQE (e.g., 603) in the RQ 601. The message data
can be written directly to the RPIR using the data writer 614,

US 9,288,163 B2

7

as shown by arrow 633. The host software 620 can write a
copy of the packet data to a posted receive buffer 608, which
the application can access.

If a large message is directed to a BDR process, the net-
working device 610 can perform a read of the RQ 601 using
the queue reader 612, shown by arrow 630. Based on the large
message’s associated WQE (e.g., 602 or 604) read from the
RQ 601, the VSGE(s) of the WQE can be processed. The
VSGE(s) contains a virtual address that points to a virtual
buffer 605 located in virtual address space. The virtual buffer
605 can then point to PBLs 606 located in host physical
memory 600. The networking device 610 can then perform a
read on the PBLs 606 using the memory location reader 613,
shown by arrow 631, and then a write to the RDBs 607 using
the data writer 614, shown by arrow 632. If the function call
was executed by a kernel mode application, the VSGEs, vir-
tual addresses, virtual buffer 605, and PBL read shown by
arrow 631 can be eliminated.

FIG. 7 illustrates an exemplary networking system 700 that
can be used with one or more examples of this disclosure.
Networking system 700 may include host 770, device 780,
and network 790. Host 770 may include a computer, a server,
a mobile device, or any other devices having host functional-
ity. Device 780 may include a network interface controller
(NIC) (similarly termed as network interface card or network
adapter), such as an Ethernet card, a host bus adapter (as for
Fibre Channel), a converged network adapter (CNA) (as for
supporting both Ethernet and Fibre Channel), or any other
device having networking device functionality. Network 790
may include a router, a switch, transmission medium, and
other devices having some network functionality.

Host 770 may include one or more host logic 772, a host
memory 774, an interface 778, interconnected by one or more
host buses 776. The functions of the host in the examples of
this disclosure may be implemented by host logic 772, which
can represent any set of processors or circuitry performing the
functions. Host 770 may be caused to perform the functions
of'the host in the examples of this disclosure when host logic
772 executes instructions stored in one or more machine-
readable storage media, such as host memory 774. Host 770
may interface with device 780 via interface 778.

Device 780 may include one or more device logic 782, a
device memory 784, interfaces 788 and 789, interconnected
by one or more device buses 786. The functions of the net-
working device in the examples of this disclosure may be
implemented by device logic 782, which can represent any set
of processors or circuitry performing the functions. Device
780 may be caused to perform the functions of the networking
device in the examples of this disclosure when device logic
782 executes instructions stored in one or more machine-
readable storage media, such as device memory 784. Device
780 may interface with host 770 via interface 788 and with
network 790 via interface 789. Device 780 may be a CPU, a
system-on-chip (SoC), a NIC inside a CPU, a processor with
network connectivity, an HBA, a CNA, or a storage device
(e.g., a disk) with network connectivity.

Applications for the one or more examples of the disclo-
sure can include, but are not limited to, desktop computers,
data centers, high performance computing applications, and
message based applications. Although examples disclosed
herein may be described and illustrated in terms of a single
receive queue for a single network connection, it should be
understood that the examples are not so limited, but are addi-
tionally applicable to multiple receive queues for single and
multiple connections or single receive queues (SRQs) by
multiple connections.

10

15

20

25

30

35

40

45

50

55

60

65

8

Although the disclosed examples have been fully described
with reference to the accompanying drawings, it is to be noted
that various changes and modifications will become apparent
to those skilled in the art. Such changes and modifications are
to be understood as being included within the scope of the
disclosed examples as defined by the appended claims.

What is claimed is:

1. A networking device for interfacing with a host memory,
the networking device comprising:

a logic; the logic comprising:

an interface configured to receive a first data and a sec-
ond data, the size of the first data being larger than the
size of a buffer element, the size of the second data
being the size of the buffer element or smaller;

aqueuereader configured to read a first queue entry from
a receive queue in the host memory, the first queue
entry comprising a virtual address of a virtual buffer,
the virtual buffer corresponding to a physical buffer
list in a physical memory, the physical buffer list
corresponding to a plurality of data buffers in an
unpinned memory in the host memory; and

a data writer configured to write the first data to the
plurality of data buffers in the unpinned memory in
the host memory in response to the first queue entry,
wherein the data writer is further configured to write
the second data to a pinned memory in the host
memory.

2. The networking device of claim 1, wherein the pinned
memory is a data buffer queue, wherein the data writer is
configured to write the second data to the data bufter queue at
a data buffer queue element corresponding to a second queue
entry of the receive queue.

3. The networking device of claim 1, wherein the pinned
memory is the receive queue, wherein the data writer is con-
figured to write the second data to the receive queue.

4. A networking adapter incorporating the networking
device of claim 1.

5. A host incorporating the networking adapter of claim 4.

6. A network incorporating the host of claim 5.

7. A host for interfacing with a networking device, the host
comprising: a logic; the logic comprising:

a receive queue configured to store a first queue entry to be
read by a queue reader of the networking device, the first
queue entry comprising a virtual address of a virtual
buffer, the virtual buffer corresponding to a physical
buffer list in a physical memory, the physical buffer list
corresponding to a plurality of buffer elements;

an unpinned memory configured to store a first data in the
plurality of buffer elements, the first data associated with
the first queue entry, the size of the first data being larger
than the size of a buffer element; and

a pinned memory configured to store a second data from
the networking device, the size of the second data being
the size of the buffer element or smaller, wherein the
logic is configured to write the second data to another
unpinned memory.

8. The host of claim 7, wherein the pinned memory is a data
buffer queue, wherein the data buffer queue is configured to
store the second data from the networking device at a data
buffer queue element corresponding to a second queue entry
of the receive queue.

9. The host of claim 7, wherein the pinned memory is the
receive queue, wherein receive queue is further configured to
store the second data from the networking device.

10. A network incorporating the host of claim 7.

US 9,288,163 B2

9

11. A method for interfacing with a host memory, compris-
ing:

receiving a first data and a second data, the size of the first

data being larger than the size of a buffer element, the
size of the second data being the size of the buffer
element or smaller;
reading a first queue entry from a receive queue in the host
memory, the first queue entry comprising a virtual
address of a virtual bufter, the virtual buffer correspond-
ing to a physical buffer list in a physical memory, the
physical buffer list corresponding to a plurality of buffer
elements in the unpinned memory in the host memory;

writing the first data to the plurality of buffer elements in
the unpinned memory in the host memory in response to
the read first queue entry; and

writing the second data to a pinned memory in the host

memory.

12. The method of claim 11, wherein the pinned memory is
a data buffer queue,

wherein the writing the second data to the pinned memory

in the host memory includes writing the second data to
the data buffer queue at a data buffer queue element
corresponding to a second queue entry of the receive
queue.

13. The method of claim 11, wherein the pinned memory is
the receive queue, wherein the writing the second data to the
pinned memory in the host memory includes writing the
second data to the receive queue.

14. A non-transitory machine-readable medium for an
apparatus, the medium storing instructions that, when

10

15

10

executed by one or more processors, cause the apparatus to
perform a method comprising:
storing a first queue entry in a receive queue configured to
be read by a queue reader of a networking device, the
first queue entry comprising a virtual address of a virtual
buffer, the virtual buffer corresponding to a physical
buffer list in a physical memory, the physical buffer list
corresponding to a plurality of buffer elements in the
unpinned memory in the host memory;
storing a first data from the networking device in the plu-
rality of buffer elements in the unpinned memory, the
first data associated with the first queue entry, the size of
the first data being larger than the size of a buffer ele-
ment;
storing a second data from the networking device in a
pinned memory, the size of the second data being the
size of the buffer element or smaller; and
writing the second data to another unpinned memory.
15. The non-transitory machine-readable medium of claim
14, wherein the pinned memory is a data buffer queue,
wherein the storing the second data from the networking
device in the pinned memory includes storing the second
data from the networking device in the data buffer queue
at a data buffer queue element corresponding to a second
queue entry of the receive queue.
16. The non-transitory machine-readable medium of claim
14, wherein the pinned memory is the receive queue,
wherein storing the second data from the networking
device in the pinned memory includes storing the second
data from the networking device in the receive queue.

#* #* #* #* #*

